These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic study of Nidus Vespae inhibiting gastric cancer in vitro through the JAK2/STAT3 signaling pathway. Author: Zhu M, Peng Y, Qi Q, Zhang Y, Han W, Bao Y, Liu Y. Journal: J Ethnopharmacol; 2025 Feb 10; 338(Pt 1):119027. PubMed ID: 39489359. Abstract: ETHNOPHARMACOLOGICAL RELEVANCE: Nidus Vespae, an animal-derived traditional Chinese medicine, has a long-standing history in treating inflammatory conditions and tumor-related diseases. Notably, Nidus Vespae decoction (NVD) has been shown to inhibit the proliferation of gastric cancer cells, although the underlying mechanisms remain unclear. OBJECTIVE: This study aimed to elucidate the efficacy and mechanisms by which NVD exerts its therapeutic effects on gastric cancer. MATERIALS AND METHODS: We employed the Cell Counting Kit-8 (CCK-8) assay to assess the impact of NVD on gastric cancer cell proliferation, while flow cytometry was utilized to evaluate cell cycle arrest and apoptosis. Differentially expressed proteins (DEPs) were identified by proteomics analysis, which were further analyzed through Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Protein-protein interaction (PPI) analysis was conducted to identify the hub genes. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were conducted to assess mRNA and protein levels related to apoptosis, cell cycle regulation, and the JAK2/STAT3 pathway. Rescue experiments with Colivelin TFA confirmed the role of NVD in inhibiting gastric cancer cell proliferation. UPLC-HRMS and HS-SPME-GC-MS technologies were performed to analyze the composition of NVD, and the bioinformatics tool called BATMAN-TCM database was used for functional analyses. RESULTS: Our results demonstrated that NVD significantly hindered the proliferation of gastric cancer cells, initiated programmed cell death, and induced cell cycle arrest in G2/M or G0/G1 phases in various gastric carcinoma cells in vitro. The identified DEPs were involved in several cancer-related pathways and signal transduction processes, notably the JAK-STAT receptor signaling pathway. NVD was found to down-regulate the JAK2/STAT3 signaling cascade, and reactivation of STAT3 diminished its anti-gastric cancer effects. Finally, the ingredient-target-disease network analysis also verified the anti-tumor effect of NVD. CONCLUSION: This study highlights the potential of Nidus Vespae as a therapeutic agent for gastric cancer, providing insights into its molecular mechanisms of action.[Abstract] [Full Text] [Related] [New Search]