These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic basis of hyperapobetalipoproteinemia. Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia.
    Author: Teng B, Sniderman AD, Soutar AK, Thompson GR.
    Journal: J Clin Invest; 1986 Mar; 77(3):663-72. PubMed ID: 3949973.
    Abstract:
    The turnover of apolipoprotein B (apo B) in very low density, intermediate density, and low density lipoproteins (VLDL, IDL, and LDL) and in the light and heavy fractions of LDL was determined in seven patients with hyperapobetalipoproteinemia (hyperapo B), six normolipidemic subjects, and five patients with heterozygous familial hypercholesterolemia (FH). After receiving an injection of 125I-VLDL, hyperapo B patients were found to have a higher rate of synthesis of VLDL-apo B than controls (40.1 vs. 21.5 mg/kg per d, P less than 0.05) but a reduced fractional catabolic rate (FCR) (0.230 vs. 0.366/h, P less than 0.01). After receiving an injection of 131I-LDL, hyperapo B patients had higher rates of LDL-apo B synthesis than controls (23.1 vs. 13.0 mg/kg per d, P less than 0.001), as did FH patients (22.7 mg/kg per d). The FCR of LDL was similar in hyperapo B patients and controls (0.386 vs. 0.366/d) but was markedly decreased in FH patients (0.192/d). Most subjects exhibited precursor-product relationships between VLDL and IDL, and all did between IDL and light LDL; an analogous relationship between light and heavy LDL was evident in most hyperapo B patients and controls but not in FH patients. Simultaneous injection of differentially labeled LDL fractions and deconvolution analysis showed increased light LDL synthesis with normal conversion into heavy LDL in hyperapo B, whereas in FH conversion of light LDL was reduced and there was independent synthesis of heavy LDL. These data show that the increased concentration of LDL-apo B in hyperapo B is solely due to increased LDL synthesis, which is secondary to increased VLDL synthesis; in contrast, in FH there is both an increase in synthesis of LDL (which is partly VLDL-independent) and reduced catabolism.
    [Abstract] [Full Text] [Related] [New Search]