These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Furosemide-sensitive Na and K fluxes in human red cells. Net uphill Na extrusion and equilibrium properties.
    Author: Brugnara C, Canessa M, Cusi D, Tosteson DC.
    Journal: J Gen Physiol; 1986 Jan; 87(1):91-112. PubMed ID: 3950577.
    Abstract:
    This paper reports experiments designed to find the concentrations of internal and external Na and K at which inward and outward furosemide-sensitive (FS) Na and K fluxes are equal, so that there is no net FS movement of Na and K. The red cell cation content was modified by using the ionophore nystatin, varying cell Na (Nai) from 0 to 34 mM (K substitution, high-K cells) and cell K (Ki) from 0 to 30 mM (Na substitution, high-Na cells). All incubation media contained NaCl (Nao = 130 or 120 nM), and KCl (Ko = 0-30 mM). In high-K cells, incubated in the absence of Ko, there was net extrusion of Na through the FS pathway. The net FS Na extrusion increased when Nai was increased. Low concentrations of Ko (0-6 mM) slightly stimulated, whereas higher concentrations of Ko inhibited, FS Na efflux. Increasing Ko stimulated the FS Na influx (K0.5 = 4 mM). Under conditions similar to those that occur in vivo (Nai = 10, Ki = 130, Nao = 130, Ko = 4 mM, Cli/Clo = 0.7), net extrusion of Na occurs through the FS pathway (180-250 mumol/liter cell X h). The concentration of Ko at which the FS Na influx and efflux and the FS K influx and efflux become equal increased when Nai increased in high-K cells and when Ki was increased in high-Na cells. The net FS Na and K fluxes both approached zero at similar internal and external Na and K concentrations. In high-K cells, under conditions when net Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional flux was found to be 2:3. In high-K cells, the empirical expression (Nai/Nao)2(Ki/Ko)3 remained at constant value (apparent equilibrium constant, Kappeq +/- SEM = 22 +/- 2) for each set of internal and external cation concentrations at which there was no net Na flux. These results indicate that in the physiological region of concentrations of internal and external Na, K, and Cl, the stoichiometry of the FS Na and K fluxes is 2 Na:3 K. In high-Na cells under conditions when net FS Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional fluxes was 3:2 (1).(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]