These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: II. Modulation by gamma-aminobutyric acid and serotonin.
    Author: Dearry A, Burnside B.
    Journal: J Neurochem; 1986 Apr; 46(4):1022-31. PubMed ID: 3950617.
    Abstract:
    In the accompanying paper we reported that 3,4-dihydroxyphenylethylamine (dopamine) induced light-adaptive retinomotor movements in teleost photoreceptors and that this effect was mediated by D2 dopamine receptors located on the photoreceptors themselves. In this study, we investigated the effects on cone retinomotor movement of three agents that have been reported by others to modulate retinal dopamine release: gamma-aminobutyric acid (GABA), 5-hydroxytryptamine (5-HT, serotonin), and melatonin. We report here that the GABA antagonists bicuculline and picrotoxin induced light-adaptive cone contraction in dark-adapted green sunfish retinas cultured in constant darkness; thus they mimic the effect of light or exogenously applied dopamine. Since their effects were blocked by either the D2 dopamine antagonist sulpiride or by Co2+, it seems likely that these agents act by enhancing retinal dopamine release. The GABA agonist muscimol produced effects opposite to those of GABA antagonists. Muscimol inhibited light-induced cone contraction in previously dark-adapted retinas and induced dark-adaptive cone elongation in light-adapted retinas. These results suggest that in green sunfish retinas, as has been reported for other retinas, GABA inhibits dopamine release. 5-HT induced light-adaptive cone contraction in dark-adapted retinas; thus 5-HT also mimics the effect of light or exogenously applied dopamine. The effect of 5-HT was blocked by sulpiride, Co2+, or the 5-HT antagonist mianserin. These results suggest that 5-HT induces cone contraction by stimulating dopamine release. Melatonin neither inhibited dopamine-induced cone contraction in retinas cultured in the dark nor induced cone elongation in retinas cultured in the light. Our results suggest that both GABA and 5-HT (but not melatonin) affect cone retinomotor movements in green sunfish by modulating dopamine release: GABA by inhibiting and 5-HT by stimulating dopamine release. We report in the companion paper that dopamine induced contraction in isolated cone fragments. Together these observations strongly suggest that dopamine serves as the final extracellular messenger directly inducing light-adaptive cone retinomotor movement, and that GABA and 5-HT affect these movements by modulating dopamine release.
    [Abstract] [Full Text] [Related] [New Search]