These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Focal brain edema associated with acute arterial hypertension. Author: Hatashita S, Hoff JT, Ishii S. Journal: J Neurosurg; 1986 Apr; 64(4):643-9. PubMed ID: 3950747. Abstract: Acute arterial hypertension was studied in normal cats to determine its role in the formation of brain edema. Arterial hypertension was induced for 30 minutes by inflation of a balloon catheter situated in the descending aorta. Cerebral edema was evaluated by gross and microscopic observations, tissue water content by wet/dry weights, and blood-brain barrier (BBB) permeability by extravasation of horseradish peroxidase (HRP) and Evans blue dye. For 1 hour after the hypertensive insult, tissue pressure and regional cerebral blood flow (rCBF) were measured from the arterial boundary zone and from a non-boundary region, and intracranial pressure was recorded from the lateral ventricle as ventricular fluid pressure. Focal lesions with increased BBB permeability to Evans blue dye or HRP were usually located symmetrically in the cortex, corresponding to the occipitoparietal parts of the arterial boundary zones. The increase in water content was found only in areas of increased permeability. Tissue pressure increased simultaneously with the abrupt rise in blood pressure, and an increase in rCBF paralleled the elevation of blood pressure. Tissue pressure and rCBF returned to a steady state when blood pressure returned to normal. There were no differences in tissue pressure or rCBF between the arterial boundary zone and the non-boundary zone, even during arterial hypertension. In cerebral hemispheres examined 48 hours after the hypertensive challenge, brain edema had not continued to develop. The data indicate that acute arterial hypertension may produce focal brain edema with increased permeability of the BBB in the cortex of normal brain, particularly in the arterial boundary zones. The authors postulate that increased cerebral blood volume, high intraluminal pressure, and breakthrough of autoregulation play an important role in the formation of hypertensive brain edema.[Abstract] [Full Text] [Related] [New Search]