These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of adenosine uptake blockers and adenosine on evoked potentials of guinea-pig olfactory cortex.
    Author: Sanderson G, Scholfield CN.
    Journal: Pflugers Arch; 1986 Jan; 406(1):25-30. PubMed ID: 3951966.
    Abstract:
    The olfactory cortex slice preparation from guinea-pig has been used to test compounds which inhibit the cellular uptake of adenosine. The uptake inhibitors dipyridamole (0.1-10 mumol/l), dilazep (1-10 mumol/l) nitrobenzylthioguanosine (1-10 mumol/l), nitrobenzylthioinosine (0.1-5 mumol/l), and hexobendine (1-100 mumol/l) increased the potency of adenosine (0.1-30 mumol/l) by up to 5-fold but did not potentiate cyclohexyladenosine (0.01-10 mumol/l). The benzodiazepine, diazepam (1 mumol/l) slightly increased the potency of adenosine (by 1.7-fold) whereas flurazepam (3 mumol/l) had no effect, suggesting that inhibition of adenosine uptake is probably not the major therapeutic action of these compounds. The uptake inhibitors depressed the amplitude of the monosynaptic epsp when added alone, an effect reversed by adenosine deaminase (1 unit/ml) whereas the adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine (10 mumol/l) had no effect on adenosine action. These results show that in this preparation (a) adenosine action is attenuated by an uptake mechanism and (b) endogenous adenosine release normally has no apparent effects on synaptic transmission at low stimulus rates. Nitrobenzylthioinosine and nitrobenzylthioguanosine are probably the best uptake blockers.
    [Abstract] [Full Text] [Related] [New Search]