These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: K+ transport by rat colon: adaptation to a low potassium diet.
    Author: Tannen RL, Marino R, Dawson DC.
    Journal: Am J Physiol; 1986 Mar; 250(3 Pt 2):F483-7. PubMed ID: 3953826.
    Abstract:
    Recent studies with the isolated perfused rat kidney have demonstrated the existence of an intrinsic renal adaptation to conserve K+ in response to ingestion of a low K+ diet for 3 days. To determine whether the colon alters its K+ transport properties in a similar fashion, we measured transmural 86Rb fluxes across sheets of distal colonic epithelium under short-circuit conditions. Preliminary studies using a double-isotope technique demonstrated that 86Rb and 42K fluxes were similar; therefore 86Rb flux was considered equivalent to K+ flux. The distal half of the colon from each rat was divided into two segments, referred to as early and late distal colon. Experiments were carried out using rats fed a K+ -free, control (0.15 mmol/g), and high K+ (1.13 mmol/g) powdered diet of otherwise identical electrolyte content. Net K+ secretion (Jnet) by the early distal colon was reduced from 0.45 in the controls to -0.02 mueq X cm-2 X h-1 by a low K+ diet as a result of a decrease in serosal-to-mucosal flux (Jsm), with no change in mucosal-to-serosal flux (Jms). Conductance (GT) and short-circuit current (Isc) were unchanged. Jnet by the late distal colon averaged 0.17 in the controls and 0.01 mueq X cm-2 X h-1 with a low K+ diet, but this difference was not significant statistically. In comparison with the controls, a high K+ diet had no effect on Jnet by the early distal colon (0.48 mueq X cm-2 X h-1) but increased Jnet by the late distal colon substantially (0.77 mueq X cm-2 X h-1).(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]