These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Soluble fibrin consists of fibrin oligomers of heterogeneous distribution. Author: Rötker J, Preissner KT, Müller-Berghaus G. Journal: Eur J Biochem; 1986 Mar 17; 155(3):583-8. PubMed ID: 3956500. Abstract: Soluble fibrin is observed in patients with intravascular coagulation and represents an intermediary product of conversion of fibrin monomers into a fibrin clot whereby the presence of fibrinogen may suppress fibrin clot formation. The interactions between fibrin and fibrinogen and the occurrence of fibrin oligomers in soluble fibrin were studied by sucrose density ultracentrifugation. Different concentrations of soluble fibrin, prepared by mixing 125I-fibrin (24 nM - 1.5 microM) with a constant concentration of 131I-fibrinogen (6 microM) were analyzed at 37 degrees C in stable linear sucrose density gradients containing a uniform concentration of unlabelled fibrinogen (6 microM) and calcium ions in order to mimic the physiological situation. At any fibrin concentration, 125I-fibrin sedimented faster than 131I-fibrinogen through 5-30% (w/v) sucrose gradients. Sedimentation rates of fibrin increased from 9 S to 23 S depending on the initial fibrin concentration. The relative amount of residual fibrin monomer not incorporated into oligomers was calculated from the sedimentation profiles. At any fibrin concentration, the portion of free monomer was always more than twofold higher for batroxobin-generated (desAA-) fibrin than for thrombin-generated (desAABB-) fibrin. Apparent association constants for desAABB-fibrin were 3-10 times higher than those for desAA-fibrin indicating a stronger interaction between monomers of the former type of fibrin. In the presence of excess fibrinogen the predominant species in soluble desAA-fibrin were monomers and dimers, whereas dimers, trimers and higher-molecular-mass oligomers were present in soluble desAABB-fibrin. Strong interactions between both types of fibrin were demonstrated from their cosedimentation, whereby the size of these copolymers were shown to be governed by the oligomer size of the desAABB-fibrin type. These results provide evidence for the occurrence of differently sized oligomers of fibrin in soluble fibrin and for the concept of a cooperative polymerization process between both types of fibrin devoid of any stable complexes between fibrin and fibrinogen.[Abstract] [Full Text] [Related] [New Search]