These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High Absorption of Electromagnetic Waves Based on 3D PMMA@Mxene@Co3O4 Composite Microsphere.
    Author: Guo J, Wang Y, Wang L, Ding B, Wang Y, Sun Y, Dai S, Wang D, Bi S.
    Journal: Materials (Basel); 2024 Nov 06; 17(22):. PubMed ID: 39597250.
    Abstract:
    With the increasing demand for effective electromagnetic wave (EMW) absorbers due to the proliferation of electronic devices and 5G communication systems, traditional wave-absorbing materials can no longer meet the current requirements. Thus, this research introduces a three-dimensional (3D) composite material consisting of PMMA@Mxene@Co₃O₄ microspheres, prepared through in situ self-assembly and hydrothermal growth. The strong electrical conductivity of Mxene, combined with the magnetic loss of Co₃O₄, ensures enhanced dielectric-magnetic synergy, leading to excellent EMW absorption. The study investigates the influence of varying Co₃O₄ content on the electromagnetic properties of the composite. Experimental results show that the optimal sample, with a thickness of 2.5 mm, achieves a minimum reflection loss (RLmin) of -52.88 dB at 6.88 GHz and an effective absorption bandwidth (EAB) of 5.28 GHz. This work highlights the potential of 3D PMMA@Mxene@Co₃O₄ composites as high-performance microwave absorbers, providing a promising solution to EMW pollution. The findings offer valuable insights into material design strategies, demonstrate a promising pathway for developing lightweight, high-performance EMW absorbing materials by optimizing impedance matching and utilizing advanced microstructure design techniques.
    [Abstract] [Full Text] [Related] [New Search]