These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Renal mitochondrial glutamine metabolism during K+ depletion.
    Author: Sastrasinh S, Sastrasinh M.
    Journal: Am J Physiol; 1986 Apr; 250(4 Pt 2):F667-73. PubMed ID: 3963205.
    Abstract:
    We studied changes in renal mitochondrial glutamine metabolism during the development of and recovery from K+ depletion in rats. Significant increase in mitochondrial NH3 production was noted after 3 days of K+-free diet. Ammoniagenesis in K+-depleted animals reached maximal level within 2 wk of K+ deprivation when there was 64% increase in NH3 production. In contrast to the pattern of changes in mitochondrial ammoniagenesis, phosphate-dependent glutaminase (PDG) activity increased within the first 48 h of K+ deprivation, before there was any increase in NH3 production, and did not plateau even after 2 wk of K+-free diet. The disparity between NH3 production and PDG activity cannot be explained by the difference in matrix glutamate level, thus raising the possibility that mitochondrial glutamine entry may be a rate-limiting step for ammoniagenesis during K+ depletion. Recovery from K+ depletion was studied in animals prefed with K+-free diet for 2 wk prior to the initiation of K+-supplemented diet. Muscle K+ content of K+-depleted animals returned to normal after 1 wk of K+ replacement. Mitochondrial NH3 production decreased concomitantly with the attenuation in K+ deficit but did not reach the base-line value even after K+ deficit was completely corrected. Additional experiments with isolated cortical tubules also showed persistent increase in NH3 production after the correction of K+ deficit. Thus, unlike earlier studies in rats during the recovery from metabolic acidosis, which showed only increased ammoniagenesis in isolated mitochondria but not in cortical slices, animals recovered from K+ depletion demonstrated augmented NH3 production both in isolated mitochondria and intact renal tissues.
    [Abstract] [Full Text] [Related] [New Search]