These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polymorphic phase behavior of unsaturated lysophosphatidylethanolamines: a 31P NMR and X-ray diffraction study. Author: Tilcock CP, Cullis PR, Hope MJ, Gruner SM. Journal: Biochemistry; 1986 Feb 25; 25(4):816-22. PubMed ID: 3964646. Abstract: The polymorphic phase behavior of aqueous dispersions of 1-oleoyl-, 1-linoleoyl-, and 1-linolenoyl-sn-3-glycerophosphoethanolamine (1-C18:1c-PE, 1-C18:2c-PE, and 1-C18:3c-PE, respectively) has been investigated by 31P NMR, small-angle and wide-angle X-ray diffraction, and freeze-fracture techniques in response to changes in temperature and pH. Between -20 and 0 degrees C at pH 7, NMR and X-ray data indicate that 1-C18:1c-PE adopts a lamellar phase. Above 20 degrees C, the X-ray diffraction from 1-C18:1c-PE reveals no long-range lattice order, whereas the NMR data indicate lamellar structure to 90 degrees C. Freeze-fracture electron microscopy shows that 1-C18:1c-PE at pH 8.2 forms closed multilamellar vesicles upon dispersion and also that large unilamellar vesicles produced by extrusion techniques (LUVETs) can be made from 1-C18:1c-PE at pH 7. Such LUVETs can trap [3H]inulin and support a K+ diffusion potential for up to 4 h. At pH 8.5 and above, 1-C18:1c-PE forms optically clear, fluid dispersions with NMR and X-ray characteristics consistent with a micellar (noninverted) phase structure. Attempts to prepare LUVETs from 1-C18:1c-PE at pH 9 result in structures that can neither trap [3H]inulin nor support a membrane potential.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]