These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural studies of the O6meG.C interaction in the d(C-G-C-G-A-A-T-T-C-O6meG-C-G) duplex. Author: Patel DJ, Shapiro L, Kozlowski SA, Gaffney BL, Jones RA. Journal: Biochemistry; 1986 Mar 11; 25(5):1027-36. PubMed ID: 3964658. Abstract: One- and two-dimensional nuclear magnetic resonance (NMR) experiments have been undertaken to investigate the conformation of the d(C1-G2-C3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) self-complementary dodecanucleotide (henceforth called O6meG.C 12-mer), which contains C3.O6meG10 interactions in the interior of the helix. We observe intact base pairs at G2.C11 and G4.C9 on either side of the modification site at low temperature though these base pairs are kinetically destabilized in the O6meG.C 12-mer duplex compared to the G.C 12-mer duplex. One-dimensional nuclear Overhauser effects (NOEs) on the exchangeable imino protons demonstrate that the C3 and O6meG10 bases are stacked into the helix and act as spacers between the flanking G2.C11 and G4.C9 base pairs. The nonexchangeable base and H1', H2', H2'', H3', and H4' protons have been completely assigned in the O6meG.C 12-mer duplex at 25 degrees C by two-dimensional correlated (COSY) and nuclear Overhauser effect (NOESY) experiments. The observed NOEs and their directionality demonstrate that the O6meG.C 12-mer is a right-handed helix in which the O6meG10 and C3 bases maintain their anti conformation about the glycosidic bond at the modification site. The NOEs between the H8 of O6meG10 and the sugar protons of O6meG10 and adjacent C9 exhibit an altered pattern indicative of a small conformational change from a regular duplex in the C9-O6meG10 step of the O6meG.C 12-mer duplex. We propose a pairing scheme for the C3.O6meG10 interaction at the modification site. Three phosphorus resonances are shifted to low field of the normal spectral dispersion in the O6meG.C 12-mer phosphorus spectrum at low temperature, indicative of an altered phosphodiester backbone at the modification site. These NMR results are compared with the corresponding parameters in the G.C 12-mer, which contains Watson-Crick base pairs at the same position in the helix.[Abstract] [Full Text] [Related] [New Search]