These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro reduction of enamel erosion by sugarcane-derived cystatin associated with sodium trimetaphosphate. Author: Ferrari CR, Kitamoto KSA, Pelá VT, Taira ÉA, Araújo TT, Thomassian LTG, Henrique-Silva F, Pessan JP, Buzalaf MAR. Journal: Braz Oral Res; 2024; 38():e124. PubMed ID: 39661797. Abstract: The objective of this in vitro study was to assess the efficacy of CaneCPI-5, either alone or in combination with various concentrations of sodium trimetaphosphate (TMP) in protecting against initial enamel erosion. A total of 135 bovine enamel specimens were prepared and categorized into nine groups (n/group=15) according to the following treatments: Deionized water; Commercial solution (Elmex Erosion ProtectionTM); 0.1 mg/mL CaneCPI-5; 0.5% TMP; 1.0% TMP; 3.0% TMP; 0.1 mg/mL CaneCPI-5+0.5% TMP; 0.1 mg/mL CaneCPI-5+1.0%TMP; and 0.1 mg/mL CaneCPI-5+3.0%TMP. The specimens were treated with the respective solutions for 2 h, followed by acquired enamel pellicle formation for 2 h and exposure to 0.65% citric acid (CA) for 1 min. These procedures were repeated once a day for three consecutive days. Demineralization was assessed by the percentage change in surface hardness (%CSH) and calcium release into CA, analyzed by the Arsenazo III method. The data were evaluated using Kruskal-Wallis/Dunn's tests. Regarding %CSH, CaneCPI-5+3.0%TMP was the most effective treatment when compared to the CaneCPI-5 group alone. As for calcium release into CA, the CaneCPI-5+0.5% TMP and CaneCPI-5 groups (both with lower calcium release) did not significantly differ from the commercial solution. In conclusion, combination of CaneCPI-5 with TMP enhances the protective potential against initial enamel erosion in vitro.[Abstract] [Full Text] [Related] [New Search]