These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chloroform-induced alteration of glutathione S-transferase activity.
    Author: Aniya Y, Anders MW.
    Journal: Biochem Pharmacol; 1985 Jan 15; 34(2):249-55. PubMed ID: 3966926.
    Abstract:
    The effect of chloroform treatment on the hepatic glutathione S-transferases was studied in phenobarbital-treated rats. The apparent isozymic composition of glutathione S-transferases in hepatic cytosol was changed after chloroform treatment. Glutathione S-transferases AA, A, B, C, and D + E were observed in hepatic cytosol from untreated rats; in contrast, the catalytic activity associated with basic glutathione S-transferases, such as AA, A, B, and C, decreased with time after chloroform treatment. Glutathione S-transferase B was not detectable 2 hr after chloroform treatment, and glutathione S-transferases AA and C were scarcely detectable after 5 hr. Twenty-four hours after chloroform treatment, glutathione S-transferases A and C were clearly detectable as was D + E and a small amount of B. Hepatic cytosolic glutathione S-transferase activity was decreased by chloroform treatment, and reached a minimum at 5 hr after treatment. Corresponding to the decrease of hepatic cytosol glutathione S-transferase activity, serum glutathione S-transferase activity was elevated maximally 5 hr after chloroform treatment and returned to almost normal by 24 hr. Treatment of rats with SKF 525-A or cysteine inhibited the chloroform-induced elevation of serum glutathione S-transferase activity. The chromatographic properties of the glutathione S-transferases present in serum were similar to glutathione S-transferase D + E. Furthermore, after incubation of partially purified cytosolic glutathione S-transferases with chloroform in the presence of hepatic microsomes and NADPH, only transferase D + E was detected. The addition of bilirubin to partially purified cytosolic glutathione S-transferase decreased the basic character of glutathione S-transferases B and C. In conclusion, chloroform caused a release of hepatic cytosolic glutathione S-transferases into serum. Both the active metabolite of chloroform, which was produced by the microsomal cytochrome P-450 system, and bilirubin, which was increased by chloroform treatment, played roles in altering the properties of the glutathione S-transferases.
    [Abstract] [Full Text] [Related] [New Search]