These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of action of short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases. Direct evidence for carbanion formation as an intermediate step using enzyme-catalyzed C-2 proton/deuteron exchange in the absence of C-3 exchange.
    Author: Ikeda Y, Hine DG, Okamura-Ikeda K, Tanaka K.
    Journal: J Biol Chem; 1985 Jan 25; 260(2):1326-37. PubMed ID: 3968064.
    Abstract:
    The mechanisms of the initial interactions of three rat liver acyl-CoA dehydrogenases (short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases) and their fatty acyl-CoA substrate were studied using enzyme-catalyzed deuterium exchange. The reaction products were identified and quantitated using mass spectroscopy and 1H-NMR. When fatty acyl-CoA substrates were incubated with catalytic amounts of acyl-CoA dehydrogenase in D2O in the absence of an electron acceptor, a rapid monodeuteration of the substrate occurred to replace one of the prochiral C-2 hydrogens, while no C-3 hydrogens were exchanged with deuterium. The C-2 monodeuteration proceeded to the extent of 80% of the total amount of substrate added at 90 min and almost to completion at 120 min. The pKa values and optimum pD values for the C-2 proton/deuteron exchange reactions were 6.0 and 7.5, respectively, for each of the three acyl-CoA dehydrogenases. The apparent turnover numbers were 3.0, 3.3, and 0.5 s-1 for short-chain, medium-chain, and long-chain acyl-CoA dehydrogenases, respectively. These results provide the first direct evidence for carbanion formation via abstraction of a C-2 hydrogen by a base in the enzyme, as the first step of the catalytic pathway of acyl-CoA dehydrogenation. When the acyl-CoA dehydrogenases were reacted with moderate excesses of acyl-CoA substrates in D2O in the absence of an electron acceptor, maximum bleaching of the FAD absorbance and the appearance of the long wavelength absorbance, attributed to a charge transfer complex, were observed. However, the dehydrogenation products, 2-enoyl-CoAs, were produced either not at all or in an amount which represented only a minor fraction of the amount of the enzyme added, while the substrates in the enzyme-substrate complexes rapidly turned over as indicated by the extensive monodeuteration which concomitantly occurred. Unlike previous hypothesis, these results indicate that the hydride ion transfer from C-3 of the substrate to the enzyme-FAD is not yet complete in the charge-transfer complex. The transfer of the hydride ion to alloxazine N-5 and the release of products are completed only in the presence of electron-transfer flavoprotein or another suitable electron acceptor.
    [Abstract] [Full Text] [Related] [New Search]