These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reflex connections of the facial and vagal gustatory systems in the brainstem of the bullhead catfish, Ictalurus nebulosus.
    Author: Morita Y, Finger TE.
    Journal: J Comp Neurol; 1985 Jan 22; 231(4):547-58. PubMed ID: 3968255.
    Abstract:
    The primary gustatory sensory nuclei in catfish are grossly divisible into a vagal lobe and a facial lobe. In this study, the reflex connections of each gustatory lobe were determined with horseradish peroxidase (HRP) tracing methods. In addition, in order to determine the loci and morphology of the other brainstem cranial nerve nuclei, HRP was applied to the trigeminal, facial, glossopharyngeal, or vagus nerve. The sensory fibers of the facial nerve terminate in the facial lobe. The facial lobe projects bilaterally to the posterior thalamic nucleus, superior secondary gustatory nucleus, and medial reticular formation of the rostral medulla. The facial lobe has reciprocal connections with the n. lobobulbaris, medial reticular formation of the rostral medulla, descending trigeminal nucleus, medial and lateral funicular nuclei, and the vagal lobe, ipsilaterally; and with the facial lobe contralaterally. In addition, the facial lobe receives inputs from the raphe nuclei, from a pretectal nucleus, and from perilemniscal neurons located immediately adjacent to the ascending gustatory lemniscal tract at the level of the trigeminal motor nucleus. The gustatory fibers of the vagus nerve terminate in the vagal lobe, while the general visceral sensory fibers terminate in a distinct general visceral nucleus. The vagal lobe projects ipsilaterally to the superior secondary gustatory nucleus, lateral reticular formation, and n. ambiguus; and bilaterally to the commissural nucleus of Cajal. The vagal lobe has reciprocal connections with the ipsilateral lobobulbar nucleus and facial lobe. In addition, the vagal lobe receives input from neurons of the medullary reticular formation and perilemniscal neurons of the pontine tegmentum. In summary, the facial gustatory system has connections consonant with its role as an exteroceptive system which works in correlation with trigeminal and spinal afferent systems. In contrast, the vagal gustatory system has connections (e.g., with the n. ambiguus) more appropriate to a system involved in control of swallowing. These differences in central connectivity mirror the reports on behavioral dissociation of the facial and vagal gustatory systems.
    [Abstract] [Full Text] [Related] [New Search]