These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antibacterial action of lactoperoxidase-thiocyanate-hydrogen peroxide on Streptococcus agalactiae. Author: Mickelson MN. Journal: Appl Environ Microbiol; 1979 Nov; 38(5):821-6. PubMed ID: 396883. Abstract: Antibacterial activity of lactoperoxidase (LP)-thiocyanate (SCN)-hydrogen peroxide (H2O2) on Streptococcus agalactiae requires that the three reactants must be in contact with the cells simultaneously. Small but assayable amounts of LP adsorb to the cell surface and are not removed by washing. A diffusible antibacterial product of LP-SCN-H2O2 reaction was not found under our experimental conditions. Incubation of S. agalactiae cells with LP-H2O2 and 14C-labeled sodium SCN resulted in the incorporation of SCN into the bacterial protein. Most of the LP-catalyzed, incorporated SCN was released from the bacterial protein. Most of the LP-catalyzed, incorporated SCN was released from the bacterial protein with dithiothreitol. Cells that had their membrane permeability changed by treatment with Cetab or 80% ethanol incorporated more SCN than did untreated cells, i.e., approximately 1 mol of SCN for each mol of sulfhydryl group present in the reaction mixture. Alteration of membrane permeability caused protein sulfhydryls, normally protected by the cytoplasmic membrane, to become exposed to oxidation. The results suggest the LP-H2O2-catalyzed incorporation of SCN into the proteins of S. agalactiae by a mechanism similar to that reported for bovine serum albumin. Removal of reactive protein sulfhydryls from a functional role in membrane transport and in glucolysis in a likely cause of the antibacterial effect for S. agalactiae.[Abstract] [Full Text] [Related] [New Search]