These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures.
    Author: Demeter S, Rosene DL, Van Hoesen GW.
    Journal: J Comp Neurol; 1985 Mar 01; 233(1):30-47. PubMed ID: 3980771.
    Abstract:
    The interhemispheric pathways originating in the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices and coursing through the fornix system were investigated by autoradiographic tracing in 29 rhesus monkeys (Macaca mulatta). The results revealed that crossing fibers are segregated into three contiguous systems. A ventral hippocampal commissure lies at the transition between the body and anterior columns of the fornix in the vicinity of the subfornical organ and the interventricular foramina of Monro; it is formed by axons arising in the most anterior (uncal and genual) subdivisions of the hippocampal formation. A dorsal hippocampal commissure lies inferior to the posterior end of the body of the corpus callosum; it is formed by axons arising in the presubiculum and entorhinal cortex of the anterior parahippocampal gyrus and the proisocortical and neocortical subdivisions of the posterior parahippocampal gyrus but not in the hippocampal formation. A hippocampal decussation lies between the ventral hippocampal commissure and dorsal hippocampal commissure; it is formed by axons arising in the body of the hippocampal formation. In contrast to the fibers of the ventral hippocampal commissure and dorsal hippocampal commissure, which terminate in contralateral cortical areas, these decussating fibers terminate in the contralateral septum. Thus, the ventral hippocampal commissure and dorsal hippocampal commissure of the rhesus monkey appear to be homologous to similarly designated structures in other mammals. To the extent that these observations also apply to the interhemispheric fibers of the human hippocampal formation and parahippocampal areas, their possible preservation must be considered when interpreting the effect of callosal transection on seizures and the results of "split-brain" studies, since callosal transection may fail to sever the hippocampal commissures in their entirety.
    [Abstract] [Full Text] [Related] [New Search]