These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural properties and lipid binding of human apolipoprotein A-IV.
    Author: Weinberg RB, Spector MS.
    Journal: J Biol Chem; 1985 Apr 25; 260(8):4914-21. PubMed ID: 3988738.
    Abstract:
    The in vivo affinity of human apolipoprotein A-IV (apo-A-IV) for plasma lipoproteins is considerably less than that of other apolipoproteins. We have therefore studied its spectroscopic properties and its association with model chylomicrons to investigate its structural characteristics and to define their influence upon its affinity for lipids. Fluorescence emission spectra of apo-A-IV in dilute aqueous solution revealed that its single tryptophan residue resides in a pH-sensitive hydrophobic domain, which is maximally protected from iodide quenching at pH 7.5. Denaturation of apo-A-IV by guanidine hydrochloride caused a multiphasic fluorescence emission red shift, with an unusual enhancement of quantum yield. Circular dichroism spectroscopy of apo-A-IV demonstrated negative ellipticity maxima at 210 and 222 nm, consistent with 54% alpha-helical structure. The alpha-helicity of apo-A-IV as measured by [theta]222 was also pH-sensitive and displayed a distinctive decrease between pH 7.0 and 8.0. Apo-A-IV was exquisitely sensitive to denaturation by guanidine hydrochloride, and its estimated free energy of stabilization in aqueous solution was near zero. Apo-A-IV bound to the surface of Sf greater than 400 particles of a phospholipid-triglyceride emulsion in a noncooperative, concentration-dependent manner. The affinity of apo-A-IV for these model chylomicrons was influenced by changes in pH or addition of guanidine hydrochloride in a manner which correlated well with the structural changes observed under similar conditions. We conclude that human apolipoprotein A-IV possesses several biophysical properties characteristic of the better studied plasma apolipoproteins, yet, apo-A-IV appears to be marginally stable in aqueous solution and its structural characteristics and lipid binding properties are particularly sensitive to environment.
    [Abstract] [Full Text] [Related] [New Search]