These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo studies of energy metabolism in experimental cerebral ischemia using topical magnetic resonance. Changes in 31P-nuclear magnetic resonance spectra compared with electroencephalograms and regional cerebral blood flow. Author: Horikawa Y, Naruse S, Hirakawa K, Tanaka C, Nishikawa H, Watari H. Journal: J Cereb Blood Flow Metab; 1985 Jun; 5(2):235-40. PubMed ID: 3988822. Abstract: The energy state of the brain during and after transient cerebral ischemia was examined in rats by in vivo measurement of 31P-nuclear magnetic resonance (NMR) spectra using a topical magnetic resonance spectrometer. EEGs and regional CBF (rCBF) were monitored on the same ischemic models. Immediately after the induction of ischemia, the height of the ATP and phosphocreatine peaks in the spectrum began to decrease with a concurrent increase of the inorganic phosphate (Pi) peak. The calculated pH from the chemical shift of Pi decreased during ischemia. The EEG pattern became flat immediately after ischemic induction. The rCBF decreased below the sensitivity level of the measuring instrument. With 30-min ischemia, the 31P-NMR spectrum returned to a normal pattern rapidly after recirculation. However, recovery of the EEG was delayed. The rCBF after recirculation showed postischemic hyperemia followed by hypoperfusion. In cases of 120-min ischemia, none of the spectra showed recovery. Thus, we could investigate the dynamic process of pathophysiological changes occurring in the ischemic brain in vivo.[Abstract] [Full Text] [Related] [New Search]