These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Author: Amstutz M, Mohrmann M, Gmaj P, Murer H. Journal: Am J Physiol; 1985 May; 248(5 Pt 2):F705-10. PubMed ID: 3993795. Abstract: The initial linear rate of phosphate uptake was analyzed in rat renal brush border membrane vesicles. An increase in medium pH from 6.0 to 8.0 increased the sodium gradient-dependent phosphate uptake about 20-fold. Sodium-independent phosphate uptake was not altered in this pH range. At pH 7.4 an intravesicular acid pH stimulated the initial linear uptake rate (20-25%). The apparent Km for sodium increased from about 100 to 200 mM when pH was decreased from 7.4 to 6.4. The Hill coefficient for sodium interaction was close to 2 and was unaffected by pH. Increasing external sodium reduced the apparent Km of the transport system for phosphate independent of pH. Variations of phosphate concentration had no influence on the apparent Km for sodium. At high sodium concentrations, small effects (20-30%) of pH on the apparent Vmax of the transport system were found; measured at saturating sodium concentrations, the apparent Km values calculated on the basis of total phosphate were increased (50-60%) when pH was decreased from 7.4 to 6.4. The data indicate that the major effect of pH is to modify the interaction of the transport system with sodium. At nonsaturating sodium concentrations, this resulted indirectly in a reduction in the affinity for phosphate related to a different occupancy of the sodium binding site. The differences of transport rate at low phosphate and high sodium concentrations could be explained by preferential transport of divalent phosphate as well as by pH effects on other carrier properties.[Abstract] [Full Text] [Related] [New Search]