These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic changes in elicitor-treated bean cells. Enzymic responses associated with rapid changes in cell wall components.
    Author: Bolwell GP, Robbins MP, Dixon RA.
    Journal: Eur J Biochem; 1985 May 02; 148(3):571-8. PubMed ID: 3996395.
    Abstract:
    Treatment of cell suspension cultures of bean (Phaseolus vulgaris c.v. Immuna) with an elicitor preparation heat-released from the cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum resulted in rapid changes in the composition of the bean cell walls. These consisted of (a) increases in phenolic material bound to the cellulosic and hemicellulosic fractions of the wall, (b) loss of material (mainly glucose) from the hemicellulosic fraction and (c) an increase in wall-associated hydroxyproline. The increases in wall-bound phenolics were preceded by (a) rapid decreases in the intracellular levels of free hydroxycinnamic acids and (b) transient increases in the extractable activities of L-phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase. 4-Hydroxycinnamic acid 3-hydroxylase activity was present at a high level in control cultures and was not induced by elicitor. Changes in the levels of cytochrome P-450, as determined by dot blot assays utilising an anti-(P-450) monoclonal antibody, paralleled the changes in cinnamic acid 4-hydroxylase activity. The accumulation of cell wall hydroxyproline was associated with rapid transient increases in the extractable activities of proline 2-oxoglutarate dioxygenase and a protein arabinosyl transferase. An hydroxyproline-rich acceptor protein of Mr 42 500 was the major protein to incorporate [3H]arabinose following elicitation of the bean cells, and the kinetics of the extent of labelling of this protein paralleled the accumulation of hydroxyproline protein in the endomembrane system. The above metabolic changes associated with cell wall components followed rapid kinetics similar to those involved in the formation of the phytoalexin kievitone in the elicited cultures [Robbins, M. P. et al. (1985) Eur. J. Biochem. 148, 563-569]. It is therefore concluded that increased 5-hydroxy-substituted isoflavonoid biosynthesis, wall-bound phenolic synthesis and synthesis of arabinosylated hydroxyproline-rich protein are all early events which are closely linked to the initial interaction between plant cell and fungal elicitor.
    [Abstract] [Full Text] [Related] [New Search]