These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complement-mediated serum cytotoxicity for Leishmania major amastigotes: killing by serum deficient in early components of the membrane attack complex.
    Author: Hoover DL, Berger M, Hammer CH, Meltzer MS.
    Journal: J Immunol; 1985 Jul; 135(1):570-4. PubMed ID: 3998474.
    Abstract:
    Leishmania major, the agent of Oriental sore, is an obligate intracellular parasite of macrophages in mammalian hosts. Man's immune defense against this organism requires participation of specifically sensitized lymphocytes and activated macrophages. Recent studies, however, have demonstrated that as little as 1/120 concentration of normal human serum is highly cytotoxic for the amastigote form of L. major. Initiation of the lethal process occurs rapidly, requiring only 30 sec of parasite exposure to serum, and is mediated by antibody-independent activation of the alternate complement pathway. The molecular mechanism of cytotoxicity is not known, but may require participation of the membrane attack complex, C5b-9. We investigated this possibility by treating amastigotes with human sera genetically deficient in complement components C5, 6, 7, 8, or 9. We then measured viability of treated parasites by amastigote-promastigote conversion. Our results were quite unexpected: not only did C9-deficient serum kill organisms, but sera singly deficient in each of the preceding components C6 to C8 were also cytotoxic. The degree of cytotoxicity was related both to serum concentration and to the point in the complement cascade at which deficiency occurred. Sera lacking C6 or C7 were less cytotoxic than those deficient in C8, which were less toxic than those deficient in C9. Cytoxicity of deficient sera was abolished by heating serum to 56 degrees C for 30 min. These findings indicate that an incomplete membrane attack complex may mediate cytotoxicity for L. major amastigotes. Moreover, our results raise important questions regarding the mechanism by which the complex is assembled on the surface of a living, unicellular eukaryotic organism.
    [Abstract] [Full Text] [Related] [New Search]