These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Proteinase inhibitors in severe inflammatory processes (septic shock and experimental endotoxaemia): biochemical, pathophysiological and therapeutic aspects.
    Author: Fritz H.
    Journal: Ciba Found Symp; 1979; (75):351-79. PubMed ID: 399895.
    Abstract:
    Plasma levels of antithrombin III, alpha 2-macroglobulin and inter-alpha-trypsin inhibitor, as well as those of various clotting, complement and other plasma factors, were significantly decreased in 18 patients suffering from hyperdynamic septic shock. A similar statistically significant reduction of the concentrations of several plasma factors (prothrombin and antithrombin III, plasminogen and alpha 2-plasmin inhibitor, complement factor C3 and clotting factor XIII) was observed in experimental endotoxaemia. In this model the reduction in the plasma levels of these factors was considerably diminished by the intravenous injection of a granulocytic elastase--cathepsin G inhibitor of lower molecular weight from soybeans. The results of both studies indicate that consumption of plasma factors in the course of Gram-negative sepsis proceeds not only via the classical routes (by activation of the clotting, fibrinolytic and complement cascades by system-specific proteinases such as thrombokinase or the plasminogen activator) but also to an appreciable degree of unspecific degradation of plasma factors by neutral proteinases such as elastase and cathepsin G. The endotoxin-induced release of both sorts of proteinases, the system-specific ones and the unspecific lysosomal proteinases from leucocytes and other cells, is likely to be mainly responsible for the consumption of antithrombin III and alpha-2-macroglobulin via complex formation (followed by elimination of the complexes) and the increased turnover of the inter-alpha-trypsin inhibitor as observed in the clinical study. The therapeutic use of an exogenous elastase--cathepsin G inhibitor in the experimental model was stimulated by the observation that human mucous secretions contain and acid-stable inhibitor of the neutral granulocytic proteinases, called HUSI-I or antileucoproteinase. This inhibitor protects mucous membranes and soluble proteins against proteolytic attack by leucocytic proteinases released in the course of a local inflammatory response. Preliminary results indicate that HUSI-I, which is produced by the epithelial cells of mucous membranes, does not belong to any known structural type of acid-stable proteinase inhibitor. The search for other candidates suitable for medication in humans led to the discovery of a potent elastase--cathepsin G inhibitor, called eglin, in the leech Hirudo medicinalis. This acid-stable inhibitor with a molecular weight close to 8100 has an unusual structural property in that the structure of the molecule is not stabilized by any disulphide bridge.
    [Abstract] [Full Text] [Related] [New Search]