These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: mRNA sequence of three respiratory syncytial virus genes encoding two nonstructural proteins and a 22K structural protein.
    Author: Elango N, Satake M, Venkatesan S.
    Journal: J Virol; 1985 Jul; 55(1):101-10. PubMed ID: 4009789.
    Abstract:
    An mRNA sequence of two human respiratory syncytial viral nonstructural protein genes and of a gene for a 22,000-molecular-weight (22K) protein was obtained by cDNA cloning and DNA sequencing. Sequences corresponding to the 5' ends of the respective transcripts were deduced directly by primer extension and dideoxy nucleotide sequencing of the mRNAs. The availability of a bicistronic clone (pRSC6) confirmed the gene order for this portion of the genome. Contrary to other unsegmented negative-stranded RNA viruses, a 19-nucleotide intercistronic sequence was present between the NS1 and NS2 genes. The translation of cloned viral sequences in the bicistronic and monocistronic clones (pRSNS1 and pRSNS2) revealed two moderately hydrophobic proteins of 15,568 and 14,703 daltons. Their similarity in molecular size explained our earlier inability to resolve these proteins. A DNA sequence of an additional recombinant plasmid (pRSA2) revealed a long open reading frame encoding a 22,156-dalton protein containing 194 amino acids. It was relatively basic and moderately hydrophobic. A protein of this size was readily translated in vitro from a viral mRNA hybrid selected by this plasmid and corresponded to an unglycosylated 22K protein seen in purified extracellular virus but not associated with detergent- and salt-resistant cores. A second open reading frame of 90 amino acids partially overlapping with the C terminus of the 22K protein was also present within this sequence. This was reminiscent of the viral matrix protein gene which was previously shown by us to contain two overlapping reading frames. The finding of three additional viral transcripts encoding at least three identifiable proteins in human respiratory syncytial virus was a novel departure from the usual genetic organization of paramyxoviruses. The 5' ends of all three transcripts had a 5'NGGGCAAAU sequence that is common to all viral transcripts analyzed so far. Although there was no obvious homology immediately upstream of the polyadenylate tail, an AGUUA (AGUAA in the case of NS2) was present between 1 and 4 nucleotides upstream of the polyadenylate end of NS1 and 22K protein mRNAs.
    [Abstract] [Full Text] [Related] [New Search]