These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for transcellular osmotic water flow in rat proximal tubules.
    Author: Preisig PA, Berry CA.
    Journal: Am J Physiol; 1985 Jul; 249(1 Pt 2):F124-31. PubMed ID: 4014469.
    Abstract:
    To determine the predominant pathway for transepithelial osmotic water flow, the transepithelial osmotic water permeability [Pf(TE)] and the apparent dimensions of paracellular pores and slits were determined in rat proximal convoluted tubules microperfused in vivo. To measure Pf(TE), tubules were perfused with a hyposmotic, cyanide-containing solution. Pf(TE), calculated from the observed volume flux in response to the measured log mean osmotic gradient, was 0.12-0.15 cm/s, assuming sigmaNaCl equal to 1.0-0.7, respectively. The dimensions of the paracellular pathways were determined using measured sucrose and mannitol permeabilities (nonelectrolytes confined to the extracellular space). These were 0.43 and 0.87 X 10(-5) cm/s, respectively. By using the ratio of these permeabilities, their respective free solution diffusion coefficients and molecular radii, and the Renkin equation, the radius of the nonelectrolyte-permeable pores and the total pore area/cm2 surface area/channel length were calculated to be 1.4 nm and 3.56 cm-1, respectively. Similar calculations for slits yielded a slit half-width of 0.8 nm and a total slit area/cm2 surface area/channel length of 3.16 cm-1. The osmotic water permeability of these nonelectrolyte-permeable pathways was calculated by Poiseuille's law to be 0.0018 cm/s (pores) or 0.0014 cm/s (slits), at most 2% of Pf(TE). We conclude that the nonelectrolyte-permeable pathway in the tight junctions is not the major route of transepithelial osmotic water flow in the rat proximal tubule.
    [Abstract] [Full Text] [Related] [New Search]