These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lung vascular injury with protease infusion. Relationship to plasma fibronectin. Author: Cohler LF, Saba TM, Lewis EP. Journal: Ann Surg; 1985 Aug; 202(2):240-7. PubMed ID: 4015230. Abstract: Fibronectin exists in a soluble form in plasma and in an insoluble form in tissues. Plasma fibronectin can modulate phagocytic function as well as incorporate into the tissue matrix where it is believed to influence microvascular integrity and tissue repair. The temporal alterations in plasma and lung lymph fibronectin were studied in relation to increased pulmonary vascular permeability induced by protease infusion. The acute sheep lung lymph fistula model was used. A 39% decrease in plasma fibronectin (control = 421 +/- 67 micrograms/ml) was observed 2.5 hours (255 +/- 43 micrograms/ml) after protease infusion. There was an elevation of lymph fibronectin early after protease infusion, followed by a progressive decline. Concomitant with the decrease in plasma fibronectin, an increase in lymph flow (QL) of greater than 200% (from a control of 6.7 +/- 1.0 ml/hr to 13.9 +/- 1.4 ml/hr) was observed within 2.5 hours. Also, there was a sustained elevation in the total protein lymph/plasma concentration (L/P) ratio, which was maximal at 2.5 hours. The transvascular protein clearance (TVPC = QL X L/P) was 4.5 +/- 0.7 ml/hr at the control period and 13.1 +/- 2.0 ml/hr by 2.5 hours. This was indicative of increased flux of protein-rich fluid across the pulmonary endothelial barrier. Lung vascular permeability stabilized after 2.5 hours as manifested by a slowly declining L/P ratio. Thus, plasma fibronectin deficiency may contribute to the etiology of increased lung vascular permeability with protease infusion. Since the progressive decline in plasma fibronectin was not reflected in a proportional increase in lymph fibronectin, plasma fibronectin may have sequestered in tissues such as the lung, or perhaps in reticuloendothelial cells during the injury phase. Whether the progressive decrease in plasma fibronectin reflects its incorporation into the endothelial barrier matrix where it may mediate stabilization of the pulmonary microvascular barrier remains to be determined.[Abstract] [Full Text] [Related] [New Search]