These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. Author: Shaklee PN, Glaser JH, Conrad HE. Journal: J Biol Chem; 1985 Aug 05; 260(16):9146-9. PubMed ID: 4019466. Abstract: Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.[Abstract] [Full Text] [Related] [New Search]