These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fast and slow nerve growth factor binding sites in human neuroblastoma and rat pheochromocytoma cell lines: relationship of sites to each other and to neurite formation.
    Author: Sonnenfeld KH, Ishii DN.
    Journal: J Neurosci; 1985 Jul; 5(7):1717-28. PubMed ID: 4020417.
    Abstract:
    We studied (a) the distribution and properties of fast and slow 125I-nerve growth factor (125I-NGF) binding sites in cultured human neuroblastoma (NB) cell lines that were categorized as responsive (N+) or unresponsive (N-) to NGF by neurite outgrowth, (b) whether fast or slow sites mediate actions of NGF, and (c) whether NGF-mediated conversion of fast to slow sites occurs in human NB and pheochromocytoma PC 12 cells. In human NB SH-SY5Y cells, the slow sites were trypsin resistant and binding was of high affinity. Loss of binding to the slow sites had a half-time of 25 to 30 min at 37 degrees C and was very slow at 4 degrees C. In contrast, the fast sites were trypsin sensitive and binding was of lower affinity; its dissociation half-time was less than 1 min at 4 degrees C and 37 degrees C. The association rate constants of both sites were about 0.8 to 1.2 X 10(7) M-1 sec-1. Some human NB cells had both fast and slow sites. The N+ human NB lines SH-SY5Y and LA-N-5 had only slow sites. Despite the virtual elimination of fast sites by trypsin in NB MC-IXC cells, remaining slow sites could still efficiently bind 125I-NGF. These observations showed that fast sites are not required for slow site binding, neurite outgrowth, or other demonstrated actions of NGF in some NB cells. In PC 12 cells, 125I-NGF initially bound to fast sites was not directly transferred to slow sites as required for NGF-mediated conversion. The association rate constants of fast and slow sites in PC12 cells were both about 2 X 10(7) M-1 sec-1. The association kinetics were consistent with simple bimolecular reactions in both NB and PC12 cells. The combined evidence in NB and PC12 cells did not support the hypothesis of NGF-mediated conversion of fast to slow sites.
    [Abstract] [Full Text] [Related] [New Search]