These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Morphological and physiological studies of rat kidney cortex slices undergoing isosmotic swelling and its reversal: a possible mechanism for ouabain-resistant control of cell volume.
    Author: Russo MA, Ernst SA, Kapoor SC, van Rossum GD.
    Journal: J Membr Biol; 1985; 85(1):1-24. PubMed ID: 4020854.
    Abstract:
    Slices of rat kidney cortex were induced to swell by preincubation at 1 degree C in an isotonic Ringer's solution, and their capacity to reverse swelling, by net extrusion of cellular water, was studied during subsequent incubation at 25 degrees C. The recovery from swelling was prevented by the respiratory inhibitor, antimycin A. On the other hand, extrusion of water was little affected by ouabain. The extrusion of water continuing in the presence of ouabain (but not that in its absence) was significantly reduced when furosemide was added or when medium Cl- was replaced by NO-3 or I-. There was substantial variability in the morphological appearance of cells within the cortical slices. Different segments of the nephron showed different structural changes during swelling and its reversal, the proximal tubules being most markedly affected. Proximal tubular cells of swollen slices showed disorganization of brush borders and expansion of their apical surfaces, and contained vesicles in their apical cytoplasm. Upon recovery at 25 degrees C, the apical portions of these cells showed reversal of the expansion, but some apical vesicles remained. These vesicles were much more numerous after recovery in the presence of ouabain, but they were much reduced in numbers, or totally absent, when recovery took place in the presence of furosemide or absence of Cl-, with or without ouabain. The vesicles seen in the presence of ouabain alone appeared to fuse with each other and with infoldings of the basolateral plasma membrane. Rather similar results were obtained with distal tubular cells in the slices. We suggest that volume regulation in the proximal and distal tubular cells proceeds by way of two mechanisms. The first consists of extrusion of water coupled to the ouabain-sensitive transport of Na+ and K+. The other proceeds by way of an ouabain-resistant entry of water into apical cytoplasmic vesicles, following furosemide-sensitive movements of Cl- and Na+; the vesicles then expel their contents by exocytosis at the basolateral cell borders.
    [Abstract] [Full Text] [Related] [New Search]