These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nucleotide profiles of normal human blood cells determined by high-performance liquid chromatography. Author: de Korte D, Haverkort WA, van Gennip AH, Roos D. Journal: Anal Biochem; 1985 May 15; 147(1):197-209. PubMed ID: 4025817. Abstract: An anion-exchange high-performance liquid chromatography method has been used to quantitate the intracellular purine and pyrimidine nucleotides in extracts of pure lymphocytes, monocytes, neutrophils, eosinophils, erythrocytes, and platelets isolated from the blood of healthy human donors. For accurate and reproducible measurements of the nucleotide profiles in different types of pure leukocytes, the cell suspensions have to be free of platelets and erythrocytes. Incubation of the purified leukocytes for 1 h at 0 degrees C did not alter the nucleotide concentrations but reduced the interdonor variation to 10%. Incubation of purified lymphocytes for 1 h at 37 degrees C caused considerable changes in the relative concentrations of the adenine, guanine, uracil, and cytosine nucleotides. During this incubation the cell viability, the cell number, and the ATP:ADP ratio decreased. Incubation of monocytes and granulocytes for 1 h at 37 degrees C caused considerable loss of cells and/or cell death. For erythrocytes and platelets reproducible nucleotide concentrations were obtained after extraction of freshly isolated cells. During storage of erythrocytes, both at 0 degrees C and at 37 degrees C, a decrease in the ATP:ADP ratio was detected. In all cell types the predominant nucleotides were purine nucleotides, especially adenosine triphosphate. The relative concentrations of the adenine, guanine, uracil, and cytosine nucleotides were very reproducible per cell type and appeared to be characteristic for each cell type. The total nucleotide content was nearly the same for all cell types except erythrocytes, when expressed per microgram of protein. The described methods for purification and storage of blood cells will be useful for comparison of blood cells from healthy donors with those of patients, for example, leukemia patients, in which deviations of the purine and pyrimidine metabolic enzymes have already been described.[Abstract] [Full Text] [Related] [New Search]