These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The mechanism of the increase of tonic tension produced by caffeine in sheep cardiac Purkinje fibres.
    Author: Eisner DA, Valdeolmillos M.
    Journal: J Physiol; 1985 Jul; 364():313-26. PubMed ID: 4032302.
    Abstract:
    The effects of caffeine were examined on contraction and membrane current in voltage-clamped sheep cardiac Purkinje fibres. The photoprotein aequorin was injected into several cells in order to measure the intracellular ionized Ca concentration [( Ca2+]i). When the Na-K pump was inhibited, depolarization produced a twitch followed by a tonic component of tension. Repolarization produced an after-contraction. These components of tension were accompanied by corresponding increases of aequorin light. Caffeine (10 mM) decreased both the twitch and the after-contraction while increasing the tonic component. The application of caffeine also produced a transient increase of aequorin light, both during depolarization and at rest, which was followed by a maintained decrease in all three components of the light signal. In particular, although caffeine decreased the rise of aequorin light during prolonged depolarization it increased the tonic tension. The possibility that the effects of caffeine on tonic tension could be due to suppression of spontaneous Ca oscillations was rejected for the following reasons. (i) Ryanodine (which also abolishes Ca oscillations) decreased the magnitude of the tonic tension. (ii) Caffeine still increased tonic tension when it was added to a fibre exposed to ryanodine (1-10 microM). In the presence of ryanodine it was possible to measure [Ca2+]i and tonic tension without interference from Ca oscillations. The increase of tonic tension produced by caffeine could not be accounted for by a rise of [Ca2+]i. The results showed that, at a given level of Ca, caffeine increased tension. The results show that a large part of the increase of tonic tension produced by caffeine is due to an increase of the Ca sensitivity of the contractile apparatus rather than to changes of [Ca2+]i. The consequence of this observation for the experimental use of caffeine is discussed.
    [Abstract] [Full Text] [Related] [New Search]