These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fatty acid composition and Shwartzman activity of lipopolysaccharides from oral bacteria. Author: Mashimo J, Yoshida M, Ikeuchi K, Hata S, Arata S, Kasai N, Okuda K, Takazoe I. Journal: Microbiol Immunol; 1985; 29(5):395-403. PubMed ID: 4033466. Abstract: The composition and the nature of the linkage of fatty acids and the Shwartzman activity of lipopolysaccharide (LPS) preparations derived from oral gram-negative bacteria including Bacteroides gingivalis, Bacteroides loesheii, Eikenella corrodens, Fusobacterium nucleatum, and Actinobacillus actinomycetemcomitans were examined. 3-Hydroxylated and nonhydroxy fatty acids of various chain lengths were found in all of the LPS preparations. All nonhydroxy fatty acids were found to be ester-bound, and part of the 3-hydroxy fatty acids in the LPS of B. gingivalis, E. corrodens, F. nucleatum, and A. actinomycetemcomitans were shown to be involved in ester linkage. It was also suggested that the hydroxy group of the ester-bound 3-hydroxy fatty acid of the LPS of F. nucleatum and A. actinomycetemcomitans is at least partly substituted by another fatty acid, but in the LPS of B. gingivalis and E. corrodens it is not. The main amide-linked fatty acid of the LPS of B. gingivalis, E. corrodens, F. nucleatum, and A. actinomycetemcomitans was 3-hydroxyheptadecanoic, 3-hydroxydodecanoic, 3-hydroxyhexadecanoic, and 3-hydroxytetradecanoic acid, respectively. The results of the Shwartzman assay showed that the E. corrodens LPS was the most active among the preparations tested, and that the Shwartzman toxicity of Bacteroides LPS is extremely low.[Abstract] [Full Text] [Related] [New Search]