These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A cellular mechanism for myogenic regulation of cat cerebral arteries.
    Author: Harder DR.
    Journal: Ann Biomed Eng; 1985; 13(3-4):335-9. PubMed ID: 4037463.
    Abstract:
    Autoregulation of cerebral blood flow is accomplished through integration of metabolic, neurogenic and myogenic mechanisms. Myogenic mechanisms involve activation of cerebral arterial muscle cells as transmural pressure increases, providing a means through which vessel caliber can be regulated to maintain blood flow constant. The cellular mechanisms involved in this myogenic response may involve changes in the electrical potential across the plasma membrane. When isolated cat middle cerebral arteries are cannulated and prepared in a manner allowing manipulation of transmural pressure, the muscle cell membrane depolarizes as pressure increases. The degree of membrane depolarization in response to an elevated pressure is dependent upon extracellular Ca2+ [( Ca]o), increasing as [Ca]o is elevated and markedly decreasing as [Ca]o is reduced to low levels. When these arterial preparations are maintained at a physiological pressure of around 100 mm Hg, spontaneous action potentials can be recorded which increase in frequency upon further elevation in pressure. Vessels exhibiting such electrical activity can be observed to decrease in diameter as pressure is increased. Such finding suggest a membrane electrical mechanism for myogenic autoregulation of cerebral arteries.
    [Abstract] [Full Text] [Related] [New Search]