These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selective synthesis of the hexaenoic molecular species of ether-linked glycerophosphoethanolamine of Ehrlich ascites tumor cells. Author: Nakagawa Y, Waku K. Journal: Eur J Biochem; 1985 Nov 04; 152(3):569-72. PubMed ID: 4054122. Abstract: In a previous study [Waku, K. and Nakazawa, Y. (1978) Eur. J. Biochem. 88, 489-494], we observed the rapid turnover rate of the molecular species of alkylacyl glycerophosphoethanolamine (Gro-P-Etn) containing docosahexaenoic acid and the high selectivity for this molecular species of ethanolamine phosphotransferase was suggested. To clarify this point, the incorporation of [14C]ethanolamine and [14C]CDP-ethanolamine into the individual molecular species of alkenylacyl, alkylacyl and diacyl Gro-P-Etn has been determined in Ehrlich ascites tumor cells. [14C]Ethanolamine was highly incorporated into the pentaenoic + hexaenoic species of alkenylacyl, alkylacyl and diacyl Gro-P-Etn, whereas incorporation of [14C]ethanolamine into molecular species other than the pentaenoic + hexaenoic species was quite low. The selectivity of ethanolamine phosphotransferase to form the molecular species of alkylacyl and diacyl Gro-P-Etn was examined by incubation of [14C]CDP-ethanolamine and microsomes of Ehrlich ascites tumor cells. The incorporation of [14C]CDP-ethanolamine was found to occur most into the pentaenoic + hexaenoic species of both alkylacyl and diacyl Gro-P-Etn. The present results suggest that the pentaenoic + hexaenoic species are preferentially synthesized among the various kinds of molecular species of alkylacyl and diacyl Gro-P-Etn by the ethanolamine phosphotransferase in Ehrlich ascites tumor cells.[Abstract] [Full Text] [Related] [New Search]