These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Partitioning of nutrients in merino ewes. II. Glucose utilization by skeletal muscle, the pregnant uterus and the lactating mammary gland in relation to whole body glucose utilization.
    Author: Oddy VH, Gooden JM, Hough GM, Teleni E, Annison EF.
    Journal: Aust J Biol Sci; 1985; 38(1):95-108. PubMed ID: 4062698.
    Abstract:
    The net uptake and oxidation of glucose by leg muscle, pregnant uterus, and lactating mammary gland, together with the rate of irreversible loss and oxidation of glucose in the whole body of Merino ewes are reported. The ewes were fed on either chaffed oaten hay (OH), chaffed lucerne hay (L), or a mixture of chaffed oaten and lucerne hays (OHL). Measurements were made during five different physiological states: dry (nonpregnant), at 94 and 125 days of pregnancy, and at 20 and 50 days after lambing. Whole body glucose irreversible loss was related significantly to intake of metabolizable energy and fleece-free maternal body weight and this relation was the same in dry, pregnant and lactating ewes. The proportion of glucose oxidized in the whole body was unaffected by diet, but was lower in pregnant than in dry or lactating ewes. Some 6% of whole body carbon dioxide (CO2) production was derived from oxidation of glucose, and in ewes eating the OH diet this proportion was lower than for ewes fed on other diets. The proportion of CO2 derived from glucose was lower in pregnant ewes than in dry and lactating ewes. Leg (muscle) glucose uptake was lower in ewes fed on the OH diet than in ewes given the other diets. This arose partly because of decreased blood flow to the leg in ewes fed OH. Muscle glucose uptake, corrected for lactate output, accounted for 20, 44 and 34% of glucose irreversible loss in ewes fed OH, OHL and L respectively. There was no significant effect of physiological state on glucose uptake by leg muscle. The maximum contribution glucose uptake, corrected for output of lactate, could make to leg muscle oxygen consumption was 31% and there were no differences due to diet or physiological state. Uterine glucose uptake was 10.5 mg min-1 kg-1, and was unaffected by diet and stage of pregnancy. Glucose uptake was maintained, despite a decline in blood flow per kilogram of uterus from 399 to 237 ml min-1 kg-1, between 94 and 125 days of pregnancy by an increase in arteriovenous difference of glucose over the same period from 2.8 to 4.4 mg 100 ml-1. Total uptake of glucose by the uterus increased from 26 to 47 mg min-1 between 94 and 125 days of pregnancy. The proportion of glucose irreversible loss accounted for by uterine uptake increased from 46 to 65% between 94 and 125 days, and was greater for ewes fed OH (84%) than L (46%) at 125 days of pregnancy. A maximum of 71% of milk lactose could have been derived directly from glucose; 17% of glucose taken up by the mammary gland was oxidized, contributing to 20% of mammary CO2 output. Mammary glucose uptake was lower in ewes fed OH than in ewes fed the other diets.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]