These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diethylstilbestrol metabolites and analogs. Biochemical probes for differential stimulation of uterine estrogen responses. Author: Korach KS, Fox-Davies C, Quarmby VE, Swaisgood MH. Journal: J Biol Chem; 1985 Dec 15; 260(29):15420-6. PubMed ID: 4066677. Abstract: Diethylstilbestrol (DES) and certain chemically structural derivatives and analogs, indenestrol A (IA), indenestrol B (IB), indanestrol (IN), and pseudo-DES (PD), have been used as probes to examine various estrogenic responses previously considered interrelated and obligatory to the stimulation of uterine growth. All the analogs had poor uterotropic activity in vivo which ranged from 10-200 times less than that of estradiol or DES. The poor uterotropic activity was not due to poor binding affinity for the receptor. All compounds except IN interacted with the mouse uterine estrogen receptor with high affinity (approximately Ka 1.5-2.2 X 10(10) M-1). In addition, the compounds were able to translocate similar levels of receptor to the nucleus in vivo. Nuclear retention and occupancy of the estrogen receptor by the compounds was comparable to the patterns produced by DES or estradiol. The activity of uterine tissue responses was investigated during treatment with the compounds. Only IA stimulated uterine glucose-6-phosphate dehydrogenase to significant levels similar to DES or estradiol. Uterine progesterone receptor was induced to varying degrees by all compounds; the indenestrol isomers (IA and IB) were the most active. Uterine DNA synthesis was marginally stimulated by the derivatives and analogs except for IB which showed a response increase comparable to DES or estradiol. Because of the differential stimulation, these data suggest that in uterine tissue estrogen receptor stimulates certain biochemical responses independently and not in concert. The ability of a particular response to be increased may depend on the chemical nature of the ligand receptor complex and its interaction at genomic sites.[Abstract] [Full Text] [Related] [New Search]