These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The spatial distribution of sound pressure within scaled replicas of the human ear canal.
    Author: Stinson MR.
    Journal: J Acoust Soc Am; 1985 Nov; 78(5):1596-602. PubMed ID: 4067075.
    Abstract:
    A theoretical model for calculating the variation of sound pressure within the ear canal is presented. The theory is an extension of the horn equation approach, and accounts for the variation of cross-sectional area and curvature of the ear canal along its length. Absorption of acoustic energy at the eardrum is included empirically through an effective eardrum impedance that acts at a single location in the canal. For comparison, measurements of the distribution of sound pressure have been made in two replica ear canals. Both replicas have geometries that duplicate, as nearly as possible, that of a real human ear canal, except that they have been scaled up in size to increase the precision of measurements. One of the replicas explicitly contains a load impedance to provide acoustical absorption at a single eardrum position. Agreement between theory and experiment was good. It is clear that at higher frequencies (above about 6 kHz in human ear canals), this theoretical approach is preferable to the more usual "uniform cylinder" approximation for the ear canal. At higher frequencies, there is no unique eardrum pressure; rather, very large variations of sound pressure are found over the tympanic membrane surface.
    [Abstract] [Full Text] [Related] [New Search]