These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transneuronal transport in the vestibular and auditory systems of the squirrel monkey and the arctic ground squirrel. I. Vestibular system.
    Author: Carpenter MB, Cowie RJ.
    Journal: Brain Res; 1985 Dec 09; 358(1-2):249-63. PubMed ID: 4075118.
    Abstract:
    Transneuronal transport of [3H]proline, [3H]fucose, and [3H]leucine in various combinations from pledgets implanted in the ampulla of a single semicircular duct was studied in the squirrel monkey and arctic ground squirrel after long survival periods. Tritiated amino acids implanted in any single ampulla resulted in labeling of nearly all vestibular and auditory receptors, nearly all cells of the vestibular and spiral ganglia and central transport via nearly all root fibers of both nerves. Primary vestibular fibers were distributed to the vestibular nuclei (VN) and specific parts of the cerebellum in the pattern previously described. Transneuronal transport of [3H]proline by vestibular neurons was present in all known secondary pathways, except those projecting to thalamic nuclei. Observations were similar in both species, except for small differences in commissural vestibular projections. Major commissural transport was to all parts of the opposite medial vestibular nucleus (MVN) and to peripheral parts of the superior vestibular nucleus (SVN), but some transport was present in all contralateral VN, including ventral cell group y. Descending transneuronal transport was evident in vestibulospinal tract (VST) ipsilaterally and in the medial longitudinal fasciculus (MLF) bilaterally. Both [3H]proline and [3]fucose were transported transneuronally to the ipsilateral abducens nucleus (AN); with long survivals [3H]proline was transported peripherally via the ipsilateral abducens nerve root. Ascending transport in the MLF was bilateral, asymmetric and greatest contralaterally. Fibers entered the contralateral MLF near the AN and the lateral wing of the ipsilateral MLF rostral to most of the VN. Terminals in the trochlear nuclei (TN) were bilateral and greatest contralaterally. In the monkey terminals in ipsilateral oculomotor complex (OMC) were distributed uniformly in all subdivisions, except for the medial rectus subdivision (MRS), where terminals were more numerous. The greatest density of terminals was present contralaterally in the superior rectus subdivision (SRS) of the OMC; only sparse terminals were present in the MRS on that side. Transport in the ipsilateral abducens nerve roots in the monkey and the virtual absence of transport to the MRS of the contralateral OMC suggested transneuronal transport to abducens motor neurons, but not to internuclear neurons (AIN). The AIN project only to the MRS of the contralateral OMC and do not appear to receive vestibular input. Comparable observations were made in the AN, TN and OMC of the ground squirrel, although the representation of the extraocular muscles in the OMC is unknown.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]