These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physiological properties of individual cerebral axons studied in vivo for as long as one year. Author: Swadlow HA. Journal: J Neurophysiol; 1985 Nov; 54(5):1346-62. PubMed ID: 4078619. Abstract: The long-term stability of conduction velocity and recovery processes were studied in a fast-conducting (corticotectal) and in a more slowly conducting (visual callosal) axonal system. Chronic microelectrode recording methods were used in conjunction with antidromic activation via electrical stimulation at one or more axonal site. These methods enabled 54 axons to be studied for greater than 20 days and seven of these cells to be studied for 101-448 days. The conduction velocities of corticotectal axons were characteristic of myelinated axons and were very stable over time. The conduction velocities of most callosal axons were characteristic of nonmyelinated axons, and 68% of callosal axons had conduction velocities that were stable over long periods of time. Of the remaining callosal axons, approximately one third showed an increase in conduction velocity (8-14%), whereas two thirds showed a progressive and systematic decrease in conduction velocity (6-81%). These changes in conduction velocity were distributed along the callosal axon, rather than limited to a single segment of axon. Although the refractory period of callosal and corticotectal axons showed considerable variability over time, the minimal interval between two conducted impulses was stable. The stability of this property was remarkable because the minimal interspike intervals of different axons with similar conduction velocities often differed greatly. Callosal axons show a supernormal period of increased conduction velocity following the relative refractory period and a subsequent subnormal period of decreased conduction velocity following a burst of prior impulses. In different callosal axons the magnitude of the velocity changes (percent change) differs greatly, even among axons of the same conduction velocity. For a given axon, however, these properties are very stable over time. These results on axonal properties may be useful in studies requiring the examination of extracellular responses of individual neurons over long periods of time. Antidromic latency provides a useful means of identifying a cell, particularly when conduction times are long. The stability of the minimal interspike interval and the supernormal period within individual axons make them suitable as ancillary criteria in identifying individual neurons. These three measures are independent of spike amplitude and waveform, and together they provide a "signature" by which individual cortical neurons can be identified over periods that represent a significant portion of the lifespan of adult mammals.[Abstract] [Full Text] [Related] [New Search]