These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous observation of order and dynamics at several defined positions in a single acyl chain using 2H NMR of single acyl chain perdeuterated phosphatidylcholines.
    Author: Paddy MR, Dahlquist FW, Dratz EA, Deese AJ.
    Journal: Biochemistry; 1985 Oct 08; 24(21):5988-95. PubMed ID: 4084502.
    Abstract:
    Deuterium nuclear magnetic resonance (2H NMR) spectra from aqueous dispersions of phosphatidylcholines in which perdeuterated palmitic acid is esterified at the sn-1 position have several very useful features. The powder spectra show six well-resolved 90 degree edges which correspond to the six positions closest to the methyl end of the acyl chain. The spectral overlap inherent in the multiple powder pattern line shape of these dispersions can be removed by using a "dePaking" procedure [Bloom, M., Davis, J.H., & Mackay, A. (1981) Chem. Phys. Lett. 80, 198-202] which calculates the spectra that would result if the lipid bilayers were oriented in the magnetic field. This procedure produces six well-resolved doublets whose NMR properties can be observed without interference from the resonances of other labeled positions. The presence of a single double bond in the sn-2 chain increases the order of the saturated 16:0 sn-1 chain at every position in the bilayer compared with a saturated sn-2 chain at the same reduced temperature. Surprisingly, addition of five more double bonds to the sn-2 chain only slightly reduces the order of the 16:0 sn-1 chain at many positions in the bilayer compared with the single double bond. Calculating oriented spectra from a spin-lattice (T1) relaxation series of powder spectra allows one to obtain the T1 relaxation times of six positions on the acyl chain simultaneously. As an example of the utility of these molecules, we demonstrate that the dependence of the spin-lattice (T1) relaxation rate as a function of orientational order for two unsaturated phospholipids differs significantly from the corresponding fully saturated analogue. Interpreting this difference using current models of acyl chain dynamics suggests that the bilayers containing either of the two unsaturated phospholipids are significantly more deformable than bilayers made from the fully saturated phospholipid.
    [Abstract] [Full Text] [Related] [New Search]