These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Funicular trajectories of brainstem neurons projecting to the lumbar spinal cord in the monkey (Macaca fascicularis): a retrograde labeling study.
    Author: Carlton SM, Chung JM, Leonard RB, Willis WD.
    Journal: J Comp Neurol; 1985 Nov 15; 241(3):382-404. PubMed ID: 4086662.
    Abstract:
    Brainstem nuclei projecting to the lumbar spinal cord in the monkey were identified by using horseradish peroxidase and the fluorescent dye granular blue. These retrogradely transported tracers were used in fluid and/or gel forms to determine the funicular trajectories of the brainstem-spinal projections. The major descending components of the dorsal funiculus arose from the n. gracilis, n. cuneatus, and the n. of the solitary tract. Major components of the dorsolateral funiculus (DLF) came from the raphe complex, medullary and pontine reticular formation, locus coeruleus, Edinger-Westphal n., and red n. Other nuclei giving rise to minor contributions to the DLF included n. gracilis, n. cuneatus, n. of the solitary tract, medial and spinal vestibular n., subcoeruleus, periaqueductal gray, interstitial n. of Cajal, n. of Darkschewitsch, and the anteromedian n. The major components of ventral cord paths (ventrolateral and ventral funiculi) arose from the raphe complex, the medullary and pontine reticular formation, lateral and spinal vestibular n., and the coerulean complex. Minor contributions to the ventral paths descended from the dorsal motor n. of X, n. of the solitary tract, medial vestibular n., paralemniscal reticular formation, dorsal parabrachial n., n. cuneiformis, periaqueductal gray, Kölliker-Fuse n., and red n. The possible functional implications of the funicular distribution of these descending pathways are discussed from the perspective of descending inhibition and pain modulation.
    [Abstract] [Full Text] [Related] [New Search]