These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation and characterization of 101-beta-lysozyme that possesses the beta-aspartyl sequence at aspartic acid-101.
    Author: Yamada H, Ueda T, Kuroki R, Fukumura T, Yasukochi T, Hirabayashi T, Fujita K, Imoto T.
    Journal: Biochemistry; 1985 Dec 31; 24(27):7953-9. PubMed ID: 4092046.
    Abstract:
    In the reaction of the intramolecular cross-linking between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride [Yamada, H., Kuroki, R., Hirata, M., & Imoto, T. (1983) Biochemistry 22, 4551-4556], it was found that two-thirds of the protein (both the recovered and cross-linked lysozymes) showed a lower affinity than the rest against chitin-coated Celite, an affinity adsorbent for lysozyme. The protein with the reduced affinity was separated on chitin-coated Celite affinity chromatography and found to be slightly different from native lysozyme in the elution position of the tryptic peptide of Ile-98-Arg-112 on reversed-phase high-performance liquid chromatography. In contrast with native lysozyme, the limited hydrolysis of this abnormal tryptic peptide of Ile-98-Arg-112 in 6 N HCl at 110 degrees C gave a considerable amount of beta-aspartylglycine. Therefore, it was concluded that two-thirds of the protein obtained from this reaction possessed the beta-aspartylglycyl sequence at Asp-101-Gly-102. As a result, we obtained four lysozymes from this reaction, the derivative with the beta-aspartyl sequence at Asp-101 (101-beta-lysozyme), the cross-linked derivative between Lys-13 and Leu-129 (CL-lysozyme), the CL-lysozyme derivative with the beta-aspartyl sequence at Asp-101 (101-beta-CL-lysozyme), and native lysozyme. In the ethyl esterification of Asp-52 in lysozyme with triethyloxonium fluoroborate [Parsons, S. M., Jao, L., Dahlquist, F. W., Borders, C. L., Jr., Groff, T., Racs, J., & Raftery, M. A. (1969) Biochemistry 8, 700-712; Parsons, S. M., & Raftery, M. A. (1969) Biochemistry 8, 4199-4205], the same bond rearrangement was detected in the same ratio.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]