These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Purification and properties of two endo-1,4-beta-xylanases from Irpex lacteus (Polyporus tulipiferae). Author: Kanda T, Amano Y, Nisizawa K. Journal: J Biochem; 1985 Dec; 98(6):1545-54. PubMed ID: 4093442. Abstract: Two different endo-1,4-beta-xylanases [1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8], named Xylanases I and III, were purified to homogeneity by gel filtration and ion exchange column chromatography from Driselase, a commercial enzyme preparation from Irpex lacteus (Polyporus tulipiferae). The purified enzymes were found to be homogeneous on polyacrylamide disc electrophoresis and their specific activities toward xylan were increased approximately 28.7 and 19.8 times, respectively. The activities of each enzyme were considerably inhibited by Hg2+, Ag+, and Mn2+. Their molecular weights were estimated to be approximately 38,000 and 62,000 by gel filtration and sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis, respectively. Their carbohydrate contents were 2.5% and 8.0% as glucose, and their amino acid composition patterns resembled each other, showing high contents of acidic amino acids, serine, threonine, alanine, and glycine. Both enzymes were most active at pH 6.0 but Xylanase I was more stable as to pH. Their optimum temperatures were 60 degrees C and 70 degrees C, respectively. Xylanase I split up to 34.5% of larchwood xylan whereas Xylanase III split only 18.9% of it. The products with the former were mainly xylose (X1), xylobiose (X2), and xylotriose (X3), whereas X2 and X3 were the main products with the latter. Both enzymes did not hydrolyze X2. Xylanase I produced almost equal quantities of X1 and X2 from X3, while Xylanase III did not attack this substrate. Both enzymes showed no activity toward glycans, other than xylan, such as starch, pachyman and Avicel (microcrystalline cellulose), except the almost one twentieth activity of Xylanase III toward sodium carboxymethyl cellulose (CMC).[Abstract] [Full Text] [Related] [New Search]