These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects.
    Author: Ricard J, Noat G.
    Journal: J Theor Biol; 1985 Dec 21; 117(4):633-49. PubMed ID: 4094457.
    Abstract:
    The principles of structural kinetics, as applied to dimeric enzymes, allow us to understand how the strength of subunit coupling controls both substrate-binding co-operativity, under equilibrium conditions, and kinetic co-operativity, under steady state conditions. When subunits are loosely coupled, positive substrate-binding co-operativity may result in either an inhibition by excess substrate or a positive kinetic co-operativity. Alternatively, negative substrate-binding co-operativity is of necessity accompanied by negative kinetic co-operativity. Whereas the extent of negative kinetic co-operativity is attenuated with respect to the corresponding substrate-binding co-operativity, the positive kinetic co-operativity is amplified with respect to that of the substrate-binding co-operativity. Strong kinetic co-operativity cannot be generated by a loose coupling of subunits. If subunit is propagated to the other, the dimeric enzyme may display apparently surprising co-operativity effects. If the strain of the active sites generated by subunit coupling is relieved in the non-liganded and fully-liganded states, both substrate-binding co-operativity and kinetic co-operativity cannot be negative. If the strain of the active sites however, is not relieved in these states, negative substrate-binding co-operativity is accompanied by either a positive or a negative co-operativity. The possible occurrence of a reversal of kinetic co-operativity, with respect to substrate-binding co-operativity, is the direct consequence of quaternary constraints in the dimeric enzyme. Moreover, tight coupling between subunits may generate a positive kinetic co-operativity which is not associated with any substrate-binding co-operativity. In other words a dimeric enzyme may well bind the substrate in a non co-operative fashion and display a positive kinetic co-operativity generated by the strain of the active sites.
    [Abstract] [Full Text] [Related] [New Search]