These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gamma-butyrobetaine hydroxylase: stereochemical course of the hydroxylation reaction. Author: Englard S, Blanchard JS, Midelfort CF. Journal: Biochemistry; 1985 Feb 26; 24(5):1110-6. PubMed ID: 4096892. Abstract: The stereochemical course of the aliphatic hydroxylation of gamma-butyrobetaine by calf liver and by Pseudomonas sp AK1 gamma-butyrobetaine hydroxylases has been determined. With [3(RS)-3-3H]-gamma-butyrobetaine or [3(R)-3-3H]-gamma-butyrobetaine as substrate, a rapid and significant loss of tritium to the medium occurred. On the other hand, with [3(S)-3-3H]-gamma-butyrobetaine, only a negligible release of tritium to the aqueous medium was observed. Indeed, on hydroxylation of [3(S)-3-2H]-gamma-butyrobetaine by either the calf liver or bacterial hydroxylase, the isolated product L-carnitine was found to have retained all of the deuterium initially present in the 3(S) position. Since the absolute configuration of the product L-carnitine has been determined to be R, such results are only compatible with a hydroxylation reaction that proceeded with retention of configuration. With [methyl-14C,3(R)-3-3H]-gamma-butyrobetaine as substrate for the calf liver hydroxylase, the percentage of tritium retained in the [methyl-14C]-L-carnitine product was determined as a function of percent reaction. The results of these studies indicated that pro-R hydrogen atom abstraction exceeded 99.9%. Experiments using racemic [methyl-14C,3(RS)-3-3H]-gamma-butyrobetaine as substrate yielded similar results and additionally allowed us to estimate alpha-secondary tritium kinetic isotope effects of 1.10 and 1.31 for the bacterial and calf liver enzymes, respectively. These results are discussed within the context of the radical mechanism for gamma-butyrobetaine hydroxylase previously proposed [Blanchard, J. S., & Englard, S. (1983) Biochemistry 22, 5922], and the required topographical arrangement of enzymic oxidant and substrate is illustrated.[Abstract] [Full Text] [Related] [New Search]