These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The pathways of assimilation of 13NH4+ by the cyanobacterium, Anabaena cylindrica.
    Author: Meeks JC, Wolk CP, Thomas J, Lockau W, Shaffer PW, Austin SM, Chien WS, Galonsky A.
    Journal: J Biol Chem; 1977 Nov 10; 252(21):7894-900. PubMed ID: 410809.
    Abstract:
    The principal initial product of metabolism of 13N-labeled ammonium by Anabaena cylindrica grown with either NH4+ or N2 as nitrogen source is amide-labeled glutamine. The specific activity of glutamine synthetase is approximately half as great in NH4+-grown as in N2-grown filaments. After 1.5 min of exposure to 13NH4+, the ratio of 13N in glutamate to 13N in glutamine reaches a value of approximately 0.1 for N2- and 0.15 for NH4+-grown filaments, whereas after the same period of exposure to [13N]N2, that ratio has reached a value close to unity and is rising rapidly. During pulse-chase experiments, 13N is transferred from the amide group to glutamine into glutamate, and then apparently into the alpha-amino group of glutamine. Methionine sulfoximine, an inhibitor of glutamine synthetase, inhibits the formation of glutamine. In the presence of the inhibitor, direct formation of glutamate takes place, but accounts for only a few per cent of the normal rate of formation of that amino acid; and alanine is formed about as rapidly as glutamate. Azaserine reduces formation of [13N]glutamate approximately 100-fold, with relatively little effect on the formation of [13N]glutamine. Aminooxyacetate, an inhibitor of transaminase reactions blocks transfer of 13N to aspartate, citrulline, and arginine. We conclude, on the basis of these results and others in the literature, that the glutamine synthetase/glutamate synthase pathway mediates most of the initial metabolism of ammonium in A. cylindrica, and that glutamic acid dehydrogenase and alanine dehydrogenase have only a very minor role.
    [Abstract] [Full Text] [Related] [New Search]