These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alkylation of cysteinyl residues of pig heart NAD-specific isocitrate dehydrogenase by iodoacetate. Author: Mauck L, Colman RF. Journal: Biochim Biophys Acta; 1976 Apr 08; 429(2):301-15. PubMed ID: 4125. Abstract: Pig heart NAD-specific isocitrate dehydrogenase is inactivated by reaction with iodoacetate at pH 6.0. Loss of activity can be attributed to the formation of 1-2 mol of carboxymethyl-cysteine per peptide chain. The rate of inactivation is markedly decreased by the combined addition of Mn2+ and isocitrate, but not by alpha-ketoglutarate, the coenzyme NAD or the allosteric activator ADP. The substrate concentration dependence of the decreased rate of inactivation yields a dissociation constant of 1.6 mM for the enzyme-manganous-dibasic isocitrate complex, a value that is 50 times higher than the Km for this substrate. This result suggests that in protecting the enzyme against iodoacetate, isocitrate may bind to a region distinct from the catalytic site. Isocitrate and Mn2+ also prevent thermal denaturation, with an affinity for the enzyme close to that observed for the iodoacetate-sensitive site. The alkylatable cysteine residues may contribute to a manganous-isocitrate binding site which is responsible for stabilizing an active conformation of the enzyme.[Abstract] [Full Text] [Related] [New Search]