These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Restriction and modification of bacteriophage S2 in Haemophilus influenzae.
    Author: Gromkova R, Bendler J, Goodgal S.
    Journal: J Bacteriol; 1973 Jun; 114(3):1151-7. PubMed ID: 4145862.
    Abstract:
    The major conclusion from these studies is that variants of Haemophilus influenzae Rd which restrict and modify phage S2 are metastable and capable of giving rise to one another with high frequency. Nonrestrictive RdS cells segregate spontaneously to the restricting, modifying phenotype in about 5% of the progeny of a single clone. The restrictive cells derived from RdS revert to the nonrestrictive phenotype in 15 to 25% of the progeny of a single clone. These frequencies are not appreciably affected by treatment with acriflavine or ethidium bromide, compounds which affect plasmid stability, or by nitrosoguanidine, a powerful mutagen. The genetic locus for restriction and modification of bacteriophage S2 is found to have a chromosomal position between the biotin and proline loci. Restriction-modification of phage S2 has been shown to be a function of its deoxyribonucleic acid (DNA) in that transfection with S2 phage DNA or prophage DNA is subject to host restriction and modification. An enzyme preparation, which contains endodeoxyribonuclease but no appreciable exonuclease activity, from mutant H. influenzae com(-10) did not restrict phage S2.RdS DNA or prophage DNA transfecting activity, indicating that this endodeoxyribonuclease is not responsible for phage restriction. A new restriction enzyme isolated from H. influenzae Rd was found to be the major enzyme involved in the restriction of bacteriophage S2. The enzyme inactivated the transfecting activity of unmodified phage DNA but did not attack modified phage DNA. Unlike endodeoxyribonuclease R, this enzyme requires adenosine triphosphate and S-adenosylmethionine.
    [Abstract] [Full Text] [Related] [New Search]