These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pathway of n-alkane oxidation in Cladosporium resinae.
    Author: Walker JD, Cooney JJ.
    Journal: J Bacteriol; 1973 Aug; 115(2):635-9. PubMed ID: 4146874.
    Abstract:
    Pathways of initial oxidation of n-alkanes were examined in two strains of Cladosporium resinae. Cells grow on dodecane and hexadecane and their primary alcohol and monoic acid derivatives. The homologous aldehydes do not support growth but are oxidized by intact cells and by cell-free preparations. Hexane and its derivatives support little or no growth, but cell extracts oxidize hexane, hexanol, and hexanal. Alkane oxidation by extracts is stimulated by reduced nicotinamide adenine dinucleotide (phosphate). Alcohol and aldehyde oxidation are stimulated by nicotinamide adenine dinucleotide (phosphate), and reduced coenzymes accumulate in the presence of cyanide or azide. Extracts supplied with (14)C-hexadecane convert it to the alcohol, aldehyde, and acid. Therefore, the major pathway for initial oxidation of n-alkanes is via the primary alcohol, aldehyde, and monoic acid, and the system can act on short-, intermediate-, and long-chain substrates. Thus, filamentous fungi appear to oxidize n-alkanes by pathways similar to those used by bacteria and yeasts.
    [Abstract] [Full Text] [Related] [New Search]